Skip to content

cachevector/hashprep

Repository files navigation

HashPrep

Dataset Profiler & Debugger for Machine Learning

Note

HashPrep is now in beta (v0.1.0b1). Core features are stable and tested, but the API may still evolve based on community feedback. Ready for testing in real-world ML workflows.

Overview

HashPrep is a Python library for intelligent dataset profiling and debugging that acts as a comprehensive pre-training quality assurance tool for machine learning projects. Think of it as "Pandas Profiling + PyLint for datasets", designed specifically for machine learning workflows.

It catches critical dataset issues before they derail your ML pipeline, explains the problems, and suggests context-aware fixes.
If you want, HashPrep can even apply those fixes for you automatically.


Features

Key features include:

  • Intelligent Profiling: Detect missing values, skewed distributions, outliers, and data type inconsistencies.
  • ML-Specific Checks: Identify data leakage, dataset drift, class imbalance, and high-cardinality features.
  • Automated Preparation: Get suggestions for encoding, imputation, scaling, and transformations.
  • Rich Reporting: Generate statistical summaries and exportable reports (HTML/PDF/Markdown/JSON) with embedded visualizations.
  • Production-Ready Pipelines: Output reproducible cleaning and preprocessing code (fixes.py) that integrates seamlessly with ML workflows.
  • Modern Themes: Choose between "Minimal" (professional) and "Neubrutalism" (bold) report styles.

Installation

Using pip

pip install hashprep

Using uv (recommended)

# Install uv if you haven't already
curl -LsSf https://astral.sh/uv/install.sh | sh

# Install hashprep
uv pip install hashprep

# Or for development from source
git clone https://github.com/cachevector/hashprep.git
cd hashprep
uv sync

After installation, the hashprep command will be available directly in your terminal.


Usage

HashPrep can be used both as a command-line tool and as a Python library.

CLI Usage

1. Quick Scan

Get a quick summary of critical issues in your terminal.

hashprep scan dataset.csv

Options:

  • --critical-only: Show only critical issues
  • --quiet: Minimal output (counts only)
  • --json: Output in JSON format
  • --target COLUMN: Specify target column for ML-specific checks
  • --checks CHECKS: Run specific checks (comma-separated)
  • --sample-size N: Limit analysis to N rows
  • --no-sample: Disable automatic sampling

Example:

# Scan with target column and specific checks
hashprep scan train.csv --target Survived --checks outliers,high_missing_values,class_imbalance

# Quick scan with JSON output
hashprep scan dataset.csv --json --quiet

2. Detailed Analysis

Get comprehensive details about all detected issues.

hashprep details dataset.csv

Options: Same as scan command

Example:

hashprep details train.csv --target Survived

3. Generate Reports

Generate comprehensive reports in multiple formats with visualizations.

hashprep report dataset.csv --format html --theme minimal

Options:

  • --format {md,json,html,pdf}: Report format (default: md)
  • --theme {minimal,neubrutalism}: HTML report theme (default: minimal)
  • --with-code: Generate Python scripts for fixes and pipelines
  • --full / --no-full: Include/exclude full summaries (default: True)
  • --visualizations / --no-visualizations: Include/exclude plots (default: True)
  • --target COLUMN: Specify target column
  • --checks CHECKS: Run specific checks
  • --comparison FILE: Compare with another dataset for drift detection
  • --sample-size N: Limit analysis to N rows
  • --no-sample: Disable automatic sampling

Examples:

# Generate HTML report with minimal theme
hashprep report dataset.csv --format html --theme minimal --full

# Generate PDF report without visualizations (faster)
hashprep report dataset.csv --format pdf --no-visualizations

# Generate report with automatic fix scripts
hashprep report dataset.csv --with-code

# This creates:
# - dataset_hashprep_report.md (or .html/.pdf/.json)
# - dataset_hashprep_report_fixes.py (pandas script)
# - dataset_hashprep_report_pipeline.py (sklearn pipeline)

# Compare two datasets for drift detection
hashprep report train.csv --comparison test.csv --format html

4. Version

Check HashPrep version.

hashprep version

Available Checks

  • outliers - Detect outliers using IQR method
  • duplicates - Find duplicate rows
  • high_missing_values - Columns with >50% missing data
  • dataset_missingness - Overall missing data patterns
  • high_cardinality - Categorical columns with too many unique values
  • single_value_columns - Constant columns with no variance
  • class_imbalance - Imbalanced target variable (requires --target)
  • feature_correlation - Highly correlated features
  • target_leakage - Features that may leak target information
  • dataset_drift - Distribution drift between datasets (requires --comparison)
  • uniform_distribution - Uniformly distributed numeric columns
  • unique_values - Columns where >95% values are unique
  • many_zeros - Columns with excessive zero values

Python Library Usage

Basic Analysis

import pandas as pd
from hashprep import DatasetAnalyzer

# Load your dataset
df = pd.read_csv("dataset.csv")

# Create analyzer
analyzer = DatasetAnalyzer(df)

# Run analysis
summary = analyzer.analyze()

# Access results
print(f"Critical issues: {summary['critical_count']}")
print(f"Warnings: {summary['warning_count']}")

# Iterate through issues
for issue in summary['issues']:
    print(f"{issue['severity']}: {issue['description']}")

Analysis with Target Column

# Specify target for ML-specific checks
analyzer = DatasetAnalyzer(
    df,
    target_col='target_column'
)
summary = analyzer.analyze()

Run Specific Checks

# Only run specific checks
analyzer = DatasetAnalyzer(
    df,
    selected_checks=['outliers', 'high_missing_values', 'class_imbalance']
)
summary = analyzer.analyze()

Include Visualizations

# Generate analysis with plots
analyzer = DatasetAnalyzer(df, include_plots=True)
summary = analyzer.analyze()

# Plots are stored in summary['summaries']['plots']

Drift Detection

# Compare two datasets
train_df = pd.read_csv("train.csv")
test_df = pd.read_csv("test.csv")

analyzer = DatasetAnalyzer(
    train_df,
    comparison_df=test_df,
    selected_checks=['dataset_drift']
)
summary = analyzer.analyze()

Generate Reports Programmatically

from hashprep.reports import generate_report

# Analyze dataset
analyzer = DatasetAnalyzer(df, include_plots=True)
summary = analyzer.analyze()

# Generate HTML report
generate_report(
    summary,
    format='html',
    full=True,
    output_file='report.html',
    theme='minimal'
)

# Generate PDF report
generate_report(
    summary,
    format='pdf',
    full=True,
    output_file='report.pdf'
)

# Generate JSON report
generate_report(
    summary,
    format='json',
    full=True,
    output_file='report.json'
)

# Generate Markdown report
generate_report(
    summary,
    format='md',
    full=True,
    output_file='report.md'
)

Generate Fix Scripts

from hashprep.checks.core import Issue
from hashprep.preparers.codegen import CodeGenerator
from hashprep.preparers.pipeline_builder import PipelineBuilder
from hashprep.preparers.suggestions import SuggestionProvider

# After running analysis
analyzer = DatasetAnalyzer(df, target_col='target')
summary = analyzer.analyze()

# Convert issues to proper format
issues = [Issue(**i) for i in summary['issues']]
column_types = summary.get('column_types', {})

# Get suggestions
provider = SuggestionProvider(
    issues=issues,
    column_types=column_types,
    target_col='target'
)
suggestions = provider.get_suggestions()

# Generate pandas fix script
codegen = CodeGenerator(suggestions)
fixes_code = codegen.generate_pandas_script()
with open('fixes.py', 'w') as f:
    f.write(fixes_code)

# Generate sklearn pipeline
builder = PipelineBuilder(suggestions)
pipeline_code = builder.generate_pipeline_code()
with open('pipeline.py', 'w') as f:
    f.write(pipeline_code)

Custom Sampling

from hashprep.utils.sampling import SamplingConfig

# Configure sampling for large datasets
sampling_config = SamplingConfig(max_rows=10000)

analyzer = DatasetAnalyzer(
    df,
    sampling_config=sampling_config,
    auto_sample=True
)
summary = analyzer.analyze()

# Check if sampling occurred
if 'sampling_info' in summary:
    info = summary['sampling_info']
    print(f"Sampled: {info['sample_fraction']*100:.1f}%")

License

This project is licensed under the MIT License.


Contributing

We welcome contributions from the community to make HashPrep better!

Before you get started, please:

  • Review our CONTRIBUTING.md for detailed guidelines and setup instructions
  • Write clean, well-documented code
  • Follow best practices for the stack or component you’re working on
  • Open a pull request (PR) with a clear description of your changes and motivation

About

Dataset Profiler & Debugger for Machine Learning

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published