An AI supervisor layer that orchestrates coding agents (Claude Code, Cursor, etc.) to complete complex development tasks autonomously.
Agent Proxy sits between human developers and AI coding agents, acting as an intelligent supervisor that:
- Maintains Context - Stores project context, coding standards, and session history
- Supervises & Assigns - Breaks down tasks and delegates to coding agents
- Unblocks - Auto-responds to agent clarification requests
- Verifies - Reviews agent output for correctness and quality
- Aligns & Refocuses - Keeps agents on track toward the goal
The proxy maintains three types of context:
- Project Context: Company mission, OKRs, competitive analysis, mockups
- Guidance & Practice: Coding standards, QA checklists, team preferences
- Sprint Session Context: Current tasks and their status
- Human provides one-time project context setup
- Human assigns high-level tasks
- Proxy Agent thinks, plans, and invokes the Coding Agent
- Coding Agent executes steps, may ask for clarification
- Proxy Agent auto-replies or redirects as needed
- Proxy verifies results and updates task status
- Final delivery presented to human
pip install agentproxypip install agentproxy[server]pip install agentproxy[telemetry]git clone https://github.com/allenday/agentproxy
cd agentproxy
pip install -e '.[all]'Create a .env file with your API key:
echo "GEMINI_API_KEY=your_key" > .envAfter installation, use the pa command:
# Run a task
pa "Create hello.py"
# With working directory
pa -d ./myproject "Fix bug"
# With screenshot
pa --add-screenshot design.png "Match this UI"
# View sessions
pa --list-sessions
# Set default working directory
pa --set-workdir ./myproject "Fix bug"
pa --show-workdir
# Or use python -m
python -m agentproxy "Create a REST API"Start the API server:
# Using pa-server command
pa-server
# Or with custom port
pa-server --port 8080
# Or with python -m
python -m agentproxy.serverAPI Examples:
# Start task
curl -N -X POST http://localhost:8000/task \
-H "Content-Type: application/json" \
-d '{"task": "Create hello.py", "working_dir": "./sandbox"}'
# With screenshot
curl -N -X POST http://localhost:8000/task \
-H "Content-Type: application/json" \
-d '{"task": "Match this UI", "screenshots": [{"path": "/path/to/design.png"}]}'
# Other endpoints
curl http://localhost:8000/health
curl http://localhost:8000/sessionsagentproxy supports OpenTelemetry for traces, metrics, and logs. This is opt-in and disabled by default.
-
Install with telemetry support:
pip install agentproxy[telemetry]
-
Run an OTEL collector (or use existing one):
docker run -d -p 4317:4317 otel/opentelemetry-collector:latest
-
Enable telemetry:
export AGENTPROXY_ENABLE_TELEMETRY=1 export OTEL_EXPORTER_OTLP_ENDPOINT=http://localhost:4317
-
Run agentproxy normally:
pa "Your task here" -
View telemetry in your backend (Grafana, Jaeger, etc.)
All configuration is via environment variables (follows OTEL spec):
| Variable | Default | Description |
|---|---|---|
AGENTPROXY_ENABLE_TELEMETRY |
0 |
Set to 1 to enable telemetry |
OTEL_SERVICE_NAME |
agentproxy |
Service name in traces |
OTEL_SERVICE_NAMESPACE |
default |
Service namespace (e.g., dev, prod) |
OTEL_EXPORTER_OTLP_ENDPOINT |
http://localhost:4317 |
OTLP collector endpoint |
OTEL_EXPORTER_OTLP_PROTOCOL |
grpc |
Protocol: grpc or http/protobuf |
OTEL_METRIC_EXPORT_INTERVAL |
10000 |
Metric export interval (ms) |
AGENTPROXY_OWNER_ID |
$USER |
Owner/user ID for multi-tenant tracking |
Traces:
- Task lifecycle (
pa.run_task) - PA reasoning loops (
pa.reasoning_loop) - Gemini API calls (
gemini.api.call) - Claude subprocess invocations (
claude.subprocess) - Function executions (
pa.function.*)
Metrics:
agentproxy.tasks.started- Tasks started (counter)agentproxy.tasks.completed- Tasks completed (counter with status label)agentproxy.task.duration- Task duration (histogram)agentproxy.pa.decisions- PA decisions (counter with decision type)agentproxy.pa.reasoning.duration- PA reasoning duration (histogram)agentproxy.gemini.api.duration- Gemini API call duration (histogram)agentproxy.claude.iterations- Claude subprocess invocations (counter)agentproxy.verifications- Verifications run (counter with type and result)agentproxy.sessions.active- Active sessions (gauge)
See examples/otel-stack/ for a complete docker-compose setup with:
- OTEL Collector
- Tempo (traces)
- Prometheus (metrics)
- Grafana (visualization)
cd examples/otel-stack
docker-compose up -d
# Configure agentproxy
export AGENTPROXY_ENABLE_TELEMETRY=1
export OTEL_EXPORTER_OTLP_ENDPOINT=http://localhost:4317
# Run a task
pa "Create a hello world script"
# View dashboard at http://localhost:3000Telemetry is completely opt-in:
- If
AGENTPROXY_ENABLE_TELEMETRYis not set or0, zero OTEL code runs - No performance impact when disabled
- No behavioral changes
- Works without OTEL dependencies installed (gracefully degrades)
- Python 3.9+
- Claude CLI (
claudecommand) - Gemini API key

