Skip to content

aertoria/agentproxy

Repository files navigation

Agent Proxy

An AI supervisor layer that orchestrates coding agents (Claude Code, Cursor, etc.) to complete complex development tasks autonomously.

How It Works

Agent Proxy sits between human developers and AI coding agents, acting as an intelligent supervisor that:

  1. Maintains Context - Stores project context, coding standards, and session history
  2. Supervises & Assigns - Breaks down tasks and delegates to coding agents
  3. Unblocks - Auto-responds to agent clarification requests
  4. Verifies - Reviews agent output for correctness and quality
  5. Aligns & Refocuses - Keeps agents on track toward the goal

Architecture

Architecture

The proxy maintains three types of context:

  • Project Context: Company mission, OKRs, competitive analysis, mockups
  • Guidance & Practice: Coding standards, QA checklists, team preferences
  • Sprint Session Context: Current tasks and their status

Execution Flow

Sequence

  1. Human provides one-time project context setup
  2. Human assigns high-level tasks
  3. Proxy Agent thinks, plans, and invokes the Coding Agent
  4. Coding Agent executes steps, may ask for clarification
  5. Proxy Agent auto-replies or redirects as needed
  6. Proxy verifies results and updates task status
  7. Final delivery presented to human

Installation

Basic Installation

pip install agentproxy

With Server API Support

pip install agentproxy[server]

With OpenTelemetry Support

pip install agentproxy[telemetry]

Development Install

git clone https://github.com/allenday/agentproxy
cd agentproxy
pip install -e '.[all]'

Setup

Create a .env file with your API key:

echo "GEMINI_API_KEY=your_key" > .env

Usage

Mode 1: CLI

After installation, use the pa command:

# Run a task
pa "Create hello.py"

# With working directory
pa -d ./myproject "Fix bug"

# With screenshot
pa --add-screenshot design.png "Match this UI"

# View sessions
pa --list-sessions

# Set default working directory
pa --set-workdir ./myproject "Fix bug"
pa --show-workdir

# Or use python -m
python -m agentproxy "Create a REST API"

Mode 2: Server

Start the API server:

# Using pa-server command
pa-server

# Or with custom port
pa-server --port 8080

# Or with python -m
python -m agentproxy.server

API Examples:

# Start task
curl -N -X POST http://localhost:8000/task \
  -H "Content-Type: application/json" \
  -d '{"task": "Create hello.py", "working_dir": "./sandbox"}'

# With screenshot
curl -N -X POST http://localhost:8000/task \
  -H "Content-Type: application/json" \
  -d '{"task": "Match this UI", "screenshots": [{"path": "/path/to/design.png"}]}'

# Other endpoints
curl http://localhost:8000/health
curl http://localhost:8000/sessions

Observability with OpenTelemetry

agentproxy supports OpenTelemetry for traces, metrics, and logs. This is opt-in and disabled by default.

Quick Start

  1. Install with telemetry support:

    pip install agentproxy[telemetry]
  2. Run an OTEL collector (or use existing one):

    docker run -d -p 4317:4317 otel/opentelemetry-collector:latest
  3. Enable telemetry:

    export AGENTPROXY_ENABLE_TELEMETRY=1
    export OTEL_EXPORTER_OTLP_ENDPOINT=http://localhost:4317
  4. Run agentproxy normally:

    pa "Your task here"
  5. View telemetry in your backend (Grafana, Jaeger, etc.)

Configuration

All configuration is via environment variables (follows OTEL spec):

Variable Default Description
AGENTPROXY_ENABLE_TELEMETRY 0 Set to 1 to enable telemetry
OTEL_SERVICE_NAME agentproxy Service name in traces
OTEL_SERVICE_NAMESPACE default Service namespace (e.g., dev, prod)
OTEL_EXPORTER_OTLP_ENDPOINT http://localhost:4317 OTLP collector endpoint
OTEL_EXPORTER_OTLP_PROTOCOL grpc Protocol: grpc or http/protobuf
OTEL_METRIC_EXPORT_INTERVAL 10000 Metric export interval (ms)
AGENTPROXY_OWNER_ID $USER Owner/user ID for multi-tenant tracking

What's Instrumented

Traces:

  • Task lifecycle (pa.run_task)
  • PA reasoning loops (pa.reasoning_loop)
  • Gemini API calls (gemini.api.call)
  • Claude subprocess invocations (claude.subprocess)
  • Function executions (pa.function.*)

Metrics:

  • agentproxy.tasks.started - Tasks started (counter)
  • agentproxy.tasks.completed - Tasks completed (counter with status label)
  • agentproxy.task.duration - Task duration (histogram)
  • agentproxy.pa.decisions - PA decisions (counter with decision type)
  • agentproxy.pa.reasoning.duration - PA reasoning duration (histogram)
  • agentproxy.gemini.api.duration - Gemini API call duration (histogram)
  • agentproxy.claude.iterations - Claude subprocess invocations (counter)
  • agentproxy.verifications - Verifications run (counter with type and result)
  • agentproxy.sessions.active - Active sessions (gauge)

Example: Full Stack with Grafana

See examples/otel-stack/ for a complete docker-compose setup with:

  • OTEL Collector
  • Tempo (traces)
  • Prometheus (metrics)
  • Grafana (visualization)
cd examples/otel-stack
docker-compose up -d

# Configure agentproxy
export AGENTPROXY_ENABLE_TELEMETRY=1
export OTEL_EXPORTER_OTLP_ENDPOINT=http://localhost:4317

# Run a task
pa "Create a hello world script"

# View dashboard at http://localhost:3000

Backwards Compatibility

Telemetry is completely opt-in:

  • If AGENTPROXY_ENABLE_TELEMETRY is not set or 0, zero OTEL code runs
  • No performance impact when disabled
  • No behavioral changes
  • Works without OTEL dependencies installed (gracefully degrades)

Requirements

  • Python 3.9+
  • Claude CLI (claude command)
  • Gemini API key

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages